Slip one's mind
깜빡 잊다
ex) it probably slipped his mind.

I felt it was a letdown.
~가 실망스러웠다

Later Installments
후속편 

It doesn't measure up to ~
~에 미치지 못한다
ex)  It doesn't measure up to its predecessors

Charge a premium for~
~에 추가 요금을 붙이다
ex)  This bakery charges a premium for its goods.

Cater to 
(필요, 기호 등)~을 충족하다, ~에 맞추다 

High-end
고급의 

Upset win
역전승

Close contest
접점

Get that a lot 
그런 말 많이 듣는다

Pothole
(길의) 움푹 패인 곳

Could have p.p.
~했을 수도 있다

Wreck
망가뜨리다

Good thing S V
S가 V해서 다행이다

Swerve
(갑자기) 방향을 확 틀다

File a claim for damages
손해배상을 청구하다

Consider it a learning experience
교훈이 되는 경험으로 여기다

Open up
(예약 시간대 등) 이용 가능해지다, 빈 자리가 나다

Standoffish
쌀쌀맞은

Give A the benefit of the doubt
A의 말을 믿어주다

Shift 
교대 근무

Return the favor 
보답하다, 은혜를 갚다

Rush A into things
A를 다급하게 보채다

Come around
정신 차리다

Use one's discretion
~의 재량으로 판단하다

Happy Belated Birthday
늦었지만 생일 축하해

Follow A up with B
A에 뒤이어 B를 하다 

Debate
곰곰이 생각하다

Pre-owned
중고의

Clear customs
세관을 통과하다 

Are we still on?
(약속한 것에 대해) 여전히 만나는 것 맞지?

Way past
~을 한참 지나
ex)  It's just that I'll probably get home way past midnight tonight. 

Stay out late
늦게까지 밖에 있다

Nanny 
유모

Off-putting 
마음에 들지 않는, 정이 가지 않는

Hold out for better terms
더 나은 조건을 요구하다

Sticking point
걸림돌

Subsidized education
교육 보조금

Hypocritical
위선적인

Flip over 
전복되다

Choppy 
물살이 거칠게 일렁이는

Patrol
순찰하다

Shore
강변, 해변

Capsize
(배가) 전복되다

Fossil
화석

Compromise
(능력, 가치 등을) 떨어트리다, 위태롭게 하다

Astounding
몹시 놀라운

Forgo
포기하다

Feed the meter
미터기에 요금을 지불하다

Resililent
탄성이 있는 

Break down
분해되다

Degrade 
분해되다

Landfill
쓰레기 매립지

Beekeeper 
양봉업자

Harness
이용하다, 활용하다

Pile up
쌓이다

Infested by
~로 들끓는

Untangle
(문제 등) ~을 풀다

Lax 
느슨한, 해이한

Pharmaceutical
제약의

Regulatory agency, regulatory body
규제 기관 

End up ~ing
결국 ~하게 되다

Switch sides
소속, 진영을 바꾸다

Public interest
공익

Self-interest
사리사욕

Under A's umbrella 
A의 영향력 아래에 있는

Ease
누그러뜨리다, 완화시키다

Alleviate
완화시키다

Layoff
해고

Impeachment
탄핵

Serve as
~의 역할을 하다

Legislative body
입법부

Check
견제

Judicial branch
사법부

Executive branch
행정부

The House of Representatives
하원

Post
자리, 지위

Commence
착수하다, 시작하다 

Hearing
청문회

Resolution
결의안 

Articles of impeachment
탄핵 소추안

Proceeding
법적 절차

Unfold
펼쳐지다

Preside
주재하다

Chief justice of the Supreme Court
대법원장

The accused
피고인

Convict
~에게 유죄 판결을 내리다

Be immune to
~의 영향을 받지 않다

Give A a lift
A를 차로 태워다 주다

Pursuit
추구, 추격

Stance
입장, 태도

Sturdy
견고한, 튼튼한

Evasive
얼버무리는, 회피하는

Obsolete
더 이상 쓸모 없는, 구식의

Spurious 
가짜의, 거짓된, 비논리적인

Divergent
나뉘는, 갈라지는, (의견 등이) 다른

Bleak
암울한, 음산한

Aborted
중지된, 실패한

Cluttered
어수선한, 혼란스러운 

Prose
산문

Jargon
전문 용어

Dialect
방언, 사투리 

Patch up
수습하다, 수선하다, 치료하다 

Go through
살펴보다, 검토하다

Account for
설명하다, ~의 이유가 되다, 차지하다

By one's name
~의 이름으로

Snub
모욕, 무시

Gaffe
실수

Rebuff
거절, 거부

Banter
농담

Mark down
~의 가격을 내리다

Bargain
싸게 산 물건, 횡재

Assorted
갖가지의

Dispose (of)
처리하다 처분하다

Imprint
자국, 흔적

Swelling
부기

Plagiarize
표절하다

Acquiesce to
따르다, 묵인하다

Succumb to
~에 굴복하다, (병 등으로) 쓰러지다

Plummet
곤두박질치다

Like-minded 
뜻이 맞는

Collectively
집단적으로 

Coalition
연합, 동맹

Monopoly
독점, 전매

Ballot
투표(용지)

Rectify
바로잡다

Demote
강등시키다

Summon
소집하다, 소환하다

Evade
피하다

Shun
꺼리다,피하다

Repress
억누르다 억압하다

Footage
동영상

Postulate
가정하다 요구하다

Exculpate
~의 무죄를 밝히다

Corroborate
입증하다 확증하다

Vocal cord
성대

Irritate
자극하다

Hoarse
목이 쉰, 잠긴

Feeble
아주 약한, 미미한

Frigid
추운, 냉담한

Aloof
냉담한, 무관심한

Stingy
인색한 

Thrifty
절약하는

Connotation
어감, 함축, 내포

Confront
~에 직면하다, 맞서다 

Circulate
순환시키다, 유포하다

Abdicate
(권리 등) 포기하다, 퇴위하다

Regress
퇴보하다 퇴행하다

Deflect
(관심, 비판 등) 피하다

Indolent
게으른, 나태한

Dubious
의심스러운, 수상한 

Staunch
견고한, 든든한, 충실한

Outspoken
거침없이 말하는

Ornery
성질이 고약한, 고집 센

Prosaic
평범한, 지루한

Languid
나른한, 활기 없는 

Reticent
말수가 적은 

Electorate
전체 유권자

See through
알아차리다, 간파하다

Derision
조롱, 조소

Sacrilege
신성 모독

Adulation
과찬, 아첨

Chicanery
(교묘한) 속임수

Crevice
틈, 균열

Enclave
한 국가 내의 다른 나라 또는 이민족

Sediment
침전물

Modicum
소량

Drop out of
중퇴하다, 중간에 그만두다

Pierce
뚫다, 찌르다

Be indebted to
~의 덕분이다 

Instill A in B
B에게 A를 가르치다

Opt to do
~하기로 결정하다

Storm out of
~에서 자리를 박차고 나가다

Be forecast to do
~할 것으로 예상되다

No sooner A than B
A 하자마자 B 하다

Prospect
가능성, 가망성

Incur
(비용 등) 발생시키다

Code of conduct
행동 규범

Step down
사임하다

In a show of
~에 대한 표현으로 

Solidarity
연대, 유대, 결속

Take A off the air
A의 방송을 끝내다

Look to
~에 기대다

Ripen
익다

Ripe
익은

Legitimacy
타당성, 정당성

Substantiate
입증하다

Out of spite
악의적으로

Collude
공모하다, 결탁하다

Ploy
계략, 계책

Imperial system
영국식 도량형제도

Banquet
연회

Frequent
~에 자주 다니다

Run in families
가족 대대로 이어지다

Surcharge
할증요금

Utensils
식기류

Hypnotize
~에 최면을 걸다

Wary
조심스러운, 경계하는

Block off
차단하다, 가로막다

Placebo
가짜 약, 위약

Severity
심각성

Abruptly
갑자기

Bickering
언쟁, 논쟁

Break out
발생하다

Charter
헌장

Walk out
(항의 표시로) 퇴장하다

Veto power
거부권

Cremation
화장

Biodegradable 
생분해성의

Urn
유골함

Cemetery
묘지

Eschew
피하다, 삼가다

Coffin


Myriad
무수히 많은

Modulate
변화시키다

Hypertension
고혈압

Spike in
~의 급증

Readings
측정치

Feel tense
긴장하다

Account for the fact that
~라는 사실을 고려하다

Expeditionary
탐험의, 탐사의

Set out to do
~하는 데 착수하다

Summit
정상, ~의 정상에 도달하다

Displacement
대체, 배제

Prone to N
~의 경향이 있는

Draw
(결론, 생각 등) 이끌어내다

Aggregate
종합적인

Commodity
상품

Inept
서투른

Disconcerted
당혹한, 당황한

Rampant
횡행하는, 만연한

Poaching
밀렵

Poacher
밀렵꾼

Vandalism
공공 기물 파손

Deletate A to B
A를 B에게 위임하다

Geyser
간헐천

Would-be
지망하는, 장래의

Encroach
침입하다, 침해하다

Lay the groundwork for
~에 필요한 기틀을 마련하다

Be the case
현실이 되다, 발생하다

Opt for
~을 택하다

Selective
엄선된, 특별한

Slot
자리

Surge in
~의 급증

Acclaim
찬사

Elated
마냥 기뻐하는

Then-ruling
당시에 집권하던

Descent
혈통, 후손

Embrace
받아들이다, 인정하다

Provoke
도발하다

Backfire
역효과를 낳다

Favoritism
편애

Change to
~에서의 변화

Staffing
인력 운용

Behind bars
수감 시설에서

Anti-flammatory
소염성의, 항염증의

Menstrual cramp
생리통

Inflammation
염증

Dosage
복용량

Pose less risk
위험을 덜 초래하다

Egg
난자

Counteract
~에 대처하다, 대응하다

Viable
생존 가능한

Fertilize
수정시키다

Follicle
난포

Conceive
~을 임신하다

Fraternal twins
이란성 쌍둥이

Center on
~을 중심으로 하다, ~이 초점을 맞추다

Objection to
~에 대한 이의

Allegedly
(원고에 의해) 주장된 바에 의하면

Deceitful
기만적인

Downplay
축소하다

Detrimental
유해한

Call A adj. 
A가 ~하다고 주장하다

Baseless
근거 없는 

Whitewash
호도하다, 눈가림하다

Prevail 
승리하다, 우세하다

Caterpillar
애벌레

Devastate
완전히 파괴하다, 죽이다

Lie adj.
계속 ~한 상태이다

Dormant
활동하지 않는, 휴면 상태인

Dwarf
왜성

Fuse
녹이다, 융합하다

Turn to
~에게 조언을 구하다

Give A a shot
A를 시도하다, 믿어보다

Timber
목재

Backbone
근간, 중추

Seedling
묘목

Fungus
곰팡이

Contract 
~에 감염되다

Swift
신속한

Eradicate
뿌리뽑다, 근절하다

All but 
거의

Indigenous to
~ 토종의

Outbreak
발발, 창궐

Bring A to an end
A를 그만두다

Importation
수입

Wipe out
전멸시키다

Veteran
재향군인

Laud A for B
B에 대해 A를 칭찬하다

Feat
업적, 공적

Eligible for
~에 대한 자격이 있는

Bureau
(관청의) 국, 부

To the detriment of
(결국) ~에게 손실을 끼치면서

Getaway
휴양지, 휴가

Surcharge
추가 요금

Excursion
(당일) 여행

Double occupancy
2인 1실

Suite
스위트룸, 특실

Shave
깎다

The bottom line
재무 상태, 손익 상태

In the meantime
그 동안에, 그 사이에

Dependable
신뢰할 수 있는

In one's best interest 
~에게 가장 이득이 되는

Impede
저해하다

Debilitating 
몸을 쇠약하게 하는

Be susceptible to
~에 취약하다

Flush out
쫒아내다, 제거하다

Should~ 
혹시라도 ~라면

Raid
공격, 기습

Air raid
공습

Amidst
~이 한창인

Raider
돌격대, 기습대

Crash-land
불시착하다

Infiltrate
~에 침투하다

Morale
사기, 의욕

Abandonment
포기, 중지

Reckless
무모한

Fleet
편대, 함대

Inflict damage to
~에 손실을 입히다

Expat (=expatriate)
재외국민

Call for
~에 대한 요구, 요청

Ire
분노

Abrupt
돌연한, 갑작스러운

Tenure
임기

In disarray
혼란스러운

Secure
확보하다

Untarnished
더럽혀지지 않은

Bring A forward
A를 일정보다 앞당기다

Pledge
약속, 공약

Be entitled to do
~할 권리가 있다

Eligible
자격이 있는

Inordinate
지나친, 과도한

Assure A that
A에게 ~라고 장담하다, 확언하다

Constituent
유권자, 선거권자

Oversee
총괄하다, 감독하다


출처: TEPS 문제집

'Study > English' 카테고리의 다른 글

어휘 및 표현 정리 #1  (0) 2025.01.19
Introduction to this category  (0) 2025.01.19

Travel agent 
여행사

For years
오랫동안

Go on holiday
휴가를 떠나다

Once per hour on the hour
매시 정각에 한 번씩

Pleasantly
기분 좋게, 즐겁게

Indulge (in)
(~에) 빠지다, 탐닉하다

Idle threat
말뿐인 위협

Bump into
~와 마주치다

Keep an eye out for
잘 지켜보다, 살펴보다 

Turn up
나타나다, 도착하다 

Go over 
초과하다, 넘어서다 

Frugal
알뜰한, 검소한

Splurge
돈을 물쓰듯 쓰다

Not A until B
B나 되어야 A하다

Get into the habit of ~ing
~하는 버릇이 들다

Hassle
번거로운 일

Pay off
결실을 맺다, 성공하다, 성과가 나다

Dent
움푹 패인 자국

Would rather do
~했으면 하다

Settle
(비용 등) 정산하다, 처리하다

Tea set
찻잔 세트

Pass A down
A를 물려주다

Family heirloom
집안의 가보

Sentimental value
애착, 정서적 가치

To no avail 
소용없이, 헛되이

Detour
우회

Get out of hand
감당할 수 없다

Drive up
(가격 등) ~을 끌어올리다

Look to do
~하기를 바라다

Onward
쭉, 계속

Halfway through
(진행상의) 중간에, 중도에

Wordy
장황한

Intimidating
겁나게 하는, 무섭게 하는

Liberal
진보주의자

Follow through on
완수하다, 지키다

In office
재임 중인, 재직 중인

Long overdue
너무 오래 기다려 온

Pledge
맹세하다, 약속하다

Shoplifting
매장 절도

Blind spot
사각 지대

Stash
챙겨 넣다

Ashore
해안으로, 물가로

A is to blame
A가 원인이다

Stranded
오도가도 못하는, 발이 묶인

Mouthwatering
군침 도는

We've got you covered
여러분을 위해 준비해 두었습니다

Trim
손질하다, 다듬다

Invade 
~에 침입하다

Disinfect
소독하다

Disinfectant
소독제

Ultracool
초저온의

Shape A into B
A로 B를 형성시키다

Faint
희미한

Obscure
가리다

Coverage
(보험 등에서 보장하는) 혜택

Concerted
힘을 합친, 합심한

Runaway
급등하는, 걷잡을 수 없는, 도망친 

Root cause
근본 원인

Marshy
습지의

Sancturary
보호 구역

Persecute
박해하다

Fugitive
도망자, 탈주자, 탈주한, 도망 다니는

Terrain
지역, 지형

Occupant
사용자, 차지하고 있는 사람

Maroon
탈주한 노예

Abolitionist
노예 해방론자

The succession of 
일련의, 연속된 

Reside in
~에 거주하다

Manor
대저택

Blaze
화재, 불꽃

Vacant
비어 있는

Municipal
지방의, 지방 자치의

Tear A down
A를 철거하다

Extent
정도

Stately
위엄 있는

Pending 
곧 있을

Bring A under control
A를 진압하다, 억제하다

Unoccupied
비어 있는, 사람이 없는

Arsonist
방화범

Run-down
황폐한

How do you take your coffee?
커피를 어떻게 해드릴까요? (우유, 설탕 등 넣을지)

Justified
당연한, 정당한

Excessive
지나친, 과도한

I won't keep you long
오래 걸리지 않을 거예요

Squeeze A in
A에게 짬을 내다

Something's got to be done
뭔가 조치가 취해져야 해

Raise
(문제, 주장 등) 제기하다

Regular
단골 손님

Consume
소실시키다

Might have to do 
~해야 할 수도 있다

Hint
암시하다

Fall for
~에 속아 넘어가다

Scam
(신용)사기

Abduct
유괴하다, 납치하다

Contrieve
고민하다

Kick off
시작하다

Back up
지원하다, 돕다

At times
가끔씩, 때로는

Discreet
신중한, 조심스러운

Judicious
분별력 있는, 신중한

Observant
주의 깊은, 관찰력 있는, 준수하는

Inquisive
호기심 많은

Parcel
소포, 꾸러미

Bundle 
묶음, 꾸러미

Reap
수확하다, 거둬들이다

Cache
은닉하다, 감추다

Broach
(어려운 이야기 등) 꺼내다

Muster
(힘, 용기 등) 내다, 발휘하다, 끌어 모으다

Brim with
~로 가득하다

Tamper with
~에 손을 대다, 참견하다, 매수하다

Undulate
물결치다, 울퉁불퉁하다

A selection of
엄선된, 다양한

Popularity
인기

Evict
쫓아내다

Incredulous
회의적인, 믿지 않는

Inconclusive
결정적이지 못한

Be accused of
~에 대해 비난받다, 기소되다

Indignation
분개, 분노

Turmoil
혼란, 소란

Anguish
극심한 고통, 고뇌, 번민

Penance
속죄, 고행

Nuisance
성가신 존재

Advent
출현, 도래

Affinity
친밀감, 관련성

Antidote
해결책, 해독제

Ambiance
환경, 분위기 

Custodian
관리인

Semblance
외관, 유사(성)

Crave
갈망하다

Entice
유인하다, 꼬드기다

Yield
양보하다, 양도하다

Watershed
하천 유역

Dodge
재빨리 피하다

Ordain
임명하다, 규정하다

Contingent (on)
(~을) 조건으로 하는, (~에) 부수적인

Scrupulous
세심한, 성실한

Regiment
체계적으로 통제하다

Interspersed
산재해 있는

Scour
문질러 닦다

Trepass (on, upon)
무단 침입하다 

Overtake
앞지르다, 능가하다

Withhold
제지하다, 억제하다, 보류하다

Landmine
지뢰

Civilian
민간인

Secede
분리 독립하다, 탈퇴하다

Ostracize
외면하다, 배척하다

Extradite
(범죄자를) 본국에 인도하다

Condemn
비난하다, 규탄하다

Posterity
후대, 후세

Reticence
과묵함

Solidarity
결속, 단결

Prescience
선견지명, 예지

Have a falling out with
~와 사이가 틀어지다

Rupture 
파열시키다, (관계를) 단절하다

Estrange (A from B)
(A를 B로부터) 멀어지게 하다

Demacrate
~의 경계를 표시하다, 칸막이하다, 구별하다

The instant S V
~하는 순간

Sure thing
물론

Could use
~가 필요하다, ~를 가지고 싶다

By far
단연, 몹시

Payoff
이득, 보상

Make a point
주장하다

Much-needed
몹시 필요로 하는

Verdict
평결

Inscribe A with B
A에 B를 새겨넣다

On the hunt for
~를 추적하여, 추구하여

Go and tell someone 
~에게 떠벌리고 다니다

Win A over
A를 설득하다

Level off
변동이 없다, 평탄해지다

Free of charge 
무료로

Witness
겪다

Unprecedented
전례 없는 

Demographic
인구 통계학적인 

Reversal
역전, 전환

At a staggering pace
놀라운 속도로

Set A up for B
A거 B하는 버팀목이 되다 

Liberals 
자유당

Conservatives
보수당 

Crumbling
붕괴하는 

Incentivize
장려하다

Public-private
민관의

Dispute
논쟁

Cattle


Reassure
안심시키다

Feel strongly about
~에 대해 예민하게 느끼다

Blast
쏘아올리다

Sulfurous
유황의

Upset
뒤바꾸다, 뒤엎다

Pad
(종이 등) 묶음 

Over-the-counter
일반의약품

Acupuncture
침술

Physiotherapy
물리 치료

Retreat from
~로부터의 탈피, 벗어남

Fleet
편대, 함대

Talks
협상 

Incur
발생시키다

Offshore
해외의

Tax haven
조세 피난처

Jurisdiction 
관할권, 관할구

Net worth
순자산 

Gulf
격차

Compel A to do
A에게 ~하도록 강요하다

Relocate
옮기다, 이전하다

Call into question
~에 대한 의문을 불러 일으키다

Flammable
가연성의

Cinder


Dog
계속 ~를 따라다니다

Accusation
비난, 혐의

Obscenity
외설 

Juxtaposition
병치, 병렬

Send-off
송별, 배웅

Stay tuned
계속 지켜보다

Treasure trove
귀중한 발견물

Cash-strapped
돈에 쪼들리는

Fetch + 가격
~의 가격에 팔리다

Superintendent 
교장

Rule out
배제하다, 제외하다

Put A up for sale
판매를 위해 A를 내놓다

Decide against
~하지 않기로 결정하다

Be encrusted with
~로 뒤덮이다

Mollusk
연체동물

Foreign to
~에게 생소한

Establish oneself in
~에 자리잡다

Executive summary
요약보고, 개요

Take on
떠안다

Stomach lining
위벽

Speculation
추측

Fasting
단식, 금식

In antiquity
고대에

Intact
온전한

Sarcophagus
석관

House
담고 있다

Attest to
증명하다

Exalted
고귀한, 고위층의

Be fashioned from
~로 만들어지다

Disgraced
곤욕을 치른, 망신을 당한

In the wake of
~의 후에, ~의 결과로

Insider trading
내부자 거래

Probe
조사

Implicate
연루시키다

Reprimand A for B
B에 대해 A를 문책하다, 질책하다

Prison sentence
징역형

Lift
(제재 등) 풀다, 해제하다

Raise capital
자본을 모으다

Scheme
음모

Conspire with
~와 공모하다

Bizarre
기괴한

Be ravaged by
~에 의해 손상되다

Moth
나방

Inflicted by
~에 의해 발생한

Taboo
금기

Aborigin
원주민, 토착민

Be obliged to do
의무적으로 ~하다

Intermediary
중개인, 중재자

Courtesy
예의, 공손함

Provide for
부양하다

Buy into
믿다

Flounder
(어쩔 줄 몰라) 허둥대다, 당황하다

Embrace
수용하다, 받아들이다

Offense
공격

Up-and-coming
전도 유망한

Proponent
제안자, 지지자

Mistress
정부

Monarchy
군주제

Preoccupation with
~에 대한 집착

Frivolous
사소한 시시한

Gateway
방법, 수단

Redeem A for B
A를 B로 교환하다

Fabulous
훌륭한, 굉장한

Prestige
고급의, 명문의

Prevalent
일반적인, 만연한

Expedite
신속하게 처리하다, 앞당기다

Revoke
취소하다, 철회하다

Infiltrate
~에 잠입하다, 침투하다

Go undercover
위장 근무를 하다

Concentration camp
강제 수용소

Smuggle
밀반입하다

In exile
망명 중인

Atrocity
잔학 행위

Revelation
폭로

Liberate
해방시키다

Denounce
규탄하다

Exorbitant
과도하게 비싼

Diehard fan
극성 팬

Shell out for
~에 큰 돈을 들이다

To my mind
제 생각에는 

Flagship
주력 상품 

Cross from
~의 맞은편에

Bustling
사람들로 북적대는

Hike
(큰 폭의) 인상, 급등

Devotee
추종자

Cachet
특징, 위신, 봉인

Jack up
대폭 인상하다

Mom-and-pop coffee shop
동네 커피점

Get a rush
(생각, 감정 등이 갑자기) 솟구치다

Flaunt
과시하다

Massively
엄청나게

Vanity
허영심, 자만심

Be intrigued to do
~해서 흥미로워 하다

Dispute
~에 반박하다, 이의를 제기하다 

Assertion
주장

On the grounds that
~라는 점을 근거로

Unearth
발굴하다

Far short of
~에 한참 못 미치는

Advance
진출하다


출처: TEPS 문제집

'Study > English' 카테고리의 다른 글

어휘 및 표현 정리 #2  (0) 2025.01.19
Introduction to this category  (0) 2025.01.19

영어 공부를 하며 익숙하지 않은 표현이나 어휘, 아는 말이지만 listening으로 들었을 때 한번에 받아들여지지 않는 표현 등을 정리하고자 한다.

'Study > English' 카테고리의 다른 글

어휘 및 표현 정리 #2  (0) 2025.01.19
어휘 및 표현 정리 #1  (0) 2025.01.19

산업에서 Feedback Control System을 디자인할 때 Frequency-Response를 많이 활용한다고 한다. 특히 Plant model의 불확실성 면에서 좋은 디자인을 제공해줄 수 있다. 

 

사인파 입력(sinusoidal inputs)에 대한 선형 시스템의 response를 그 시스템의 Frequency Response라 한다. 이는 pole and zero locations으로부터 알 수 있다.

 

we consider a system described by $$\frac{Y(s)}{U(s)}=G(s)$$ where the input $u(t)$ is a sine wave with an amplitude $A$: $$u(t)=A\sin(\omega_0t)1(t)$$

$u(t)$를 라플라스 변환하면 $U(s)=\frac{A\omega_0}{s^2+\omega_0^2}$이므로, $$Y(s)=G(s)\frac{A\omega_0}{s^2+\omega_0^2}$$

$Y(s)$를 Partial Expansion 하자. (일단 $G(s)$의 poles이 모두 distinct라 가정)

$$Y(s)=\frac{\alpha_1}{s-p_1}+\frac{\alpha_2}{s-p_2}+\cdots+\frac{\alpha_n}{s-p_n}+\frac{\alpha_0}{s+j\omega_0}+\frac{\alpha_0^*}{s-j\omega_0}$$

$$y(t)=\alpha_1e^{p_1t}+\alpha_2e^{p_2t}+\cdots+\alpha_ne^{p_nt}+2\left |\alpha_0 \right |\cos(\omega_0t+\phi),\quad t\geq0$$ where $$\phi=tan^{-1}\left [ \frac{Im(\alpha_0)}{Re(\alpha_0)} \right ]$$

If all the poles of the system represent stable behavior (the real parts of $p_1, p_2, . . . , p_n < 0$), the natural unforced response will die out eventually, and therefore the steady-state response of the system will be due solely to the sinusoidal term.

Using cover-up method, $$\alpha_0=(s+j\omega_0)Y(s)|_{s=-j\omega_0}=G(-j\omega_0)\frac{A\omega_0}{-2j\omega_0}=-\frac{A}{2j}G(-j\omega_0)$$

$$\alpha_0^*=(s-j\omega_0)Y(s)|_{s=j\omega_0}=G(j\omega_0)\frac{A\omega_0}{2j\omega_0}=\frac{A}{2j}G(j\omega_0)$$

$$\displaystyle \lim_{t \to 0}y(t)\approx \alpha_0e^{-j\omega_0t}+\alpha_0^*e^{j\omega_0t}=A\left | G(j\omega_0)\right |\frac{-e^{j(\omega_0t+\phi)}+e^{j(\omega_0t+\phi)}}{2j}=A\left | G(j\omega_0)\right |\sin(\omega_0t+\phi)=AM\sin(\omega_0t+\phi)$$

where $$M=\left | G(j\omega_0)\right |=\left | G(s)\right ||_{s=j\omega_0}=\sqrt{\left\{Re[G(j\omega_0)]\right\}^2+\left\{Im[G(j\omega_0)]\right\}^2}$$

$$\phi=\tan^{-1}\left[\frac{Im[G(j\omega_0)]}{Re[G(j\omega_0)]}\right]=\angle G(j\omega_0)$$

Magnitude와 phase를 각각 frequency에 대하여 표현함으로써 시스템의 특성을 확인할 수 있다. 

극형식으로부터 $G(j\omega_0)=Me^{j\phi}$로 표현할 수 있다.

 

ex 6.2)

예시를 통해 lead compensator의 Frequency-Response 특성을 알아보자.

lead compensator with $$D(s)=K\frac{Ts+1}{\alpha Ts+1},\quad\alpha<1$$

$$D(j\omega)= K\frac{Tj\omega+1}{\alpha Tj\omega+1}$$

$$M=\left|D\right|= \left | K\right |\frac{\sqrt{1+(\omega T)^2}}{\sqrt{1+(\alpha\omega T)^2}}$$

$$\phi=\angle(1+j\omega T)-\angle(1+j\alpha\omega T)=tan^{-1}(\omega T)-tan^{-1}(\alpha\omega T)$$

MATLAB으로 $D(j\omega)$를 그려보자. $(K = 1, T = 1, \;and\; α = 0.1 \;for\; 0.1 ≤ ω ≤ 100)$

num = [1 1];
den = [0.1 1];
sysD = tf(num, den);
w = logspace(-1, 2);

[mag, phase] = bode(sysD, w);

loglog(w, squeeze(mag)), grid;
semilogx(w, squeeze(phase)), grid;

Magnitude는 low frequency일 때 $1(=K)$, high frequency일 때 $10(=K/\alpha)$인 것을 확인할 수 있다. Phase는 low and high frequency일 때 phase가 0에 가까워지고 중간 즈음의 frequency에서 높은 phase가 나타나는 것을 관찰할 수 있다.

 

Transfer Function에 대하여 frequency에 따른 Magnitude와 Phase는 시스템의 dynamic response에 대한 정보를 제공한다. sinusoid input에 대하여 $M$과 $\phi$는 response를 온전히 묘사할 수 있고, periodic input의 경우 푸리에 급수를 통해 sum of sinusoids로 분해하여 total response를 분석할 수 있다. transient input에 대하여는 $G(j\omega)$와 라플라스 변환을 통해 얻은 transient response 간의 관계를 통해 이해하는 것이 좋다.

다음 전달함수를 생각해 보자. $$G(s)=\frac{1}{(s/\omega_n)^2+2\zeta(s/\omega_n)+1}$$

$\zeta$ 값에 따른 $M(\omega)$와 $\phi(\omega)$의 분포는 다음과 같다. 시스템의 damping이 transient response overshoot나 magnitude peak에 영향을 미치는 것을 관찰할 수 있다. 또한 $\omega_n$이 거의 bandwidth와 비슷하므로 bandwidth로부터 rise time을 추정할 수 있다. $\zeta<0.5$에서 peak overshoot이 약 $1/2\zeta$인 것도 확인할 수 있다. 

Figure 6.3(a)
Figure 6.3(b)

 

Bandwidth

A natural specification for system performance in terms of frequency response is the bandwidth, defined to be the maximum frequency at which the output of a system will track an input sinusoid in a satisfactory manner. By convention, for the system with a sinusoidal input $r$, the bandwidth is the frequency of $r$ at which the output $y$ is attenuated to a factor of 0.707 times the input. $$\frac{Y(s)}{R(s)}\overset{\underset{\mathrm{def}}{}}{=}T(s)=\frac{KG(s)}{1+KG(s)}$$

Bandwidth is a measure of speed of response and is therefore similar to time-domain measures such as rise time and peak time or the s-plane measure of dominant-root(s) natural frequency. In fact, if the $KG(s)$ is such that the closed-loop response is given by the graphs above, we can see that the bandwidth will equal the natural frequency of the closed-loop root (that is, $\omega_{BW} = \omega_n$ for a closed-loop damping ratio of $\zeta = 0.7$). For other damping ratios, the bandwidth is approximately equal to the natural frequency of the closed-loop roots, with an error typically less than a factor of 2.

Bandwidth의 정의는 physical control system 등 low-pass filter behavior가 있는 시스템에 대하여 논할 때 의미가 있다. 그 외의 적용에 있어 Bandwidth는 다소 다르게 정의될 수 있다. 또한 high-frequency roll-off, 즉 고주파에서 값이 떨어지는 현상이 일어나지 않는 이상적인 시스템이라면 bandwidth는 무한대가 된다(e.g. # of poles = # of zeros). 

 

 

Bode Plot

Magnitude curve는 log scale로, Phase curve는 linear scale로 그려 high-order system을 그릴 수 있다.

$$G(j\omega)=Me^{j\phi}=\frac{r_1e^{j\theta_1}r_2e^{j\theta_2}}{r_3e^{j\theta_3}r_4e^{j\theta_4}r_5e^{j\theta_5}}$$라 하자. 그러면 $$\left |G(j\omega) \right |=\frac{r_1r_2}{r_3r_4r_5},$$

where $$\log_{10}M=\log_{10}r_1+\log_{10}r_2-\log_{10}r_3-\log_{10}r_4-\log_{10}r_5$$

$$\phi=\theta_1+\theta_2-\theta_3-\theta_4-\theta_5$$

$$\log_{10}Me^{j\phi}=\log_{10}M+j\phi\log_{10}e$$

 

 

Decibel (db)

통신에서는 power gain을 decibel로 측정하는 것이 표준이다.

Power $P$, Voltage $V$에 대해서, $$\left |G \right |_{db}=10\log_{10}\frac{P_2}{P_1}=20\log_{10}\frac{V_2}{V_1}$$

따라서 Bode plot을 $\left |G \right |_{db}$ vs. $\log \omega$와 Phase (deg) vs. $\log \omega$ 로 표현할 수 있다. 이때 Magnitude에서 log를 씌워서 수직 방향 스케일이 db과 선형적이도록 표현하곤 한다.

 

 

Advantages of Bode plots

1. Dynamic compensator design can be based entirely on Bode plots.

2. Bode plots can be determined experimentally.

3. Bode plots of systems in series (or tandem) simply add, which is quite convenient.

4. The use of a log scale permits a much wider range of frequencies to be displayed on a single plot than is possible with linear scales.

 

 

Classes of terms of transfer functions

앞에서 다룬 여러 전달함수에서의 terms을 크게 세 가지로 분류하였다.

 

Class 1. $K_0(j\omega)^n$

*singularities at the origin

$$\log K_0\left | (j\omega)^n\right |=\log K_0+n\log\left | j\omega\right |$$

Magnitude Plot 기울기가 n x (20 db per decade)인 직선으로 그려지게 된다.

Class 2. $(j\omega\tau+1)^{\pm1}$

*first-order term

Magnitude Plot은 낮은 주파수일 때와 높은 주파수일 때 각각 다른 점근선(Asymptotes)을 갖는다.

For $\omega\tau\ll 1$, $j\omega\tau+1\cong 1$

For $\omega\tau\gg  1$, $j\omega\tau+1\cong j\omega\tau$

$\omega=1/\tau$를 break point라 칭한다. break point보다 작은 주파수에서는 magnitude가 거의 상수고 break point보다 큰 주파수에서는 Class 1과 유사한 양상을 보인다.

아래의 그림은 $\tau=10$일 때, 즉 $G(s)=10s+1$일 때의 magnitude plot이다. break point에서 점근선과 실제 곡선의 차이가 1.4 정도 (3 db) 있는 것을 관찰할 수 있다. break point 이전의 주파수에서는 거의 0 db이고, break point 이후의 주파수에서는 기울기가 +1(or +20 db per decade)이다.

Phase는 주파수의 범위에 따라 점근선을 크게 세 개로 나눌 수 있다.

For $\omega\tau\ll 1$, $\angle 1=0^\circ$

For $\omega\tau\gg 1$, $\angle j\omega\tau=90^\circ$

For $\omega\tau\cong1$, $\angle (j\omega\tau+1)=45^\circ$

 

 

Class 3. $\left [ \frac{j\omega}{\omega_n}+2\zeta\frac{j\omega}{\omega_n}+1 \right ]^{\pm1}$

*second-order term 

break point는 $\omega=\omega_n$으로 한다.

큰 양상은 Class 2와 유사하다. Magnitude는 break point로부터 기울기 +2(or +40 db per decade)를 갖는 직선 형태다. second-order term이 분모에 있다면 기울기는 -2다. Phase도 마찬가지로 Class 2의 두 배인 $\pm 180^{\circ}$로 변화한다.

다만 damping ratio $\zeta$에 따라 break point 주변의 transition이 다르다. 위의 Figure 6.3에서 그 모습을 확인할 수 있다.

Peak Amplitude: Figure 6.3과 같이 second-order term이 분모에 있는 경우 Magnitude의 최댓값은 break point에서 발생하며 그 값은 $\left | G(j\omega_n)\right |=1/2\zeta$ 이다.

break point에서의 Phase는 $\angle=G(j\omega_n)=\pm90^\circ$이다.

 

 

Composite Curve

poles과 zeros가 여러 개 있는 시스템의 경우 frequency response는 각 component가 결합된 composite curve로 표현된다. Composite Magnitude Curve는 각 curve 점근선의 기울기를 합한 것이고, Composite Phase Curve는 각 curve를 그대로 합한 것이다. 이 규칙은 우선 LHP의 poles과 zeros에 대한 것이며 changes for singularities in RHP는 추후 고려하도록 한다.

 

 

ex 6.3)

다음 전달 함수의 Bode Plot을 그려보자. $$KG(s)=\frac{2000(s+0.5)}{s(s+10)(s+50)}$$

먼저 각 term을 Class 1~3의 형태로 바꾸어 계산을 용이하게 한다.

$$KG(s)=\frac{2000\cdot \frac{1}{2}(\frac{s}{1/2}+1)}{500s(\frac{s}{10}+1)(\frac{s}{50}+1)}=\frac{2(\frac{s}{1/2}+1)}{s(\frac{s}{10}+1)(\frac{s}{50}+1)}$$

그리고 $s=j\omega$를 대입한다. $$KG(j\omega)=\frac{2(\frac{j\omega}{0.5}+1)}{j\omega(\frac{j\omega}{10}+1)(\frac{j\omega}{50}+1)}$$

각 term으로 인한 점근선을 그린 후 합성하여 Magnitude 및 Phase의 점근선을 나타낼 수 있다. 빨간색 점근선을 따라 그래프가 그려지게 될 것이다.

Composite Magnitude (left), Composite Phase (right)

 

'Study > Control' 카테고리의 다른 글

Controllability  (0) 2025.01.30
State-Space Design  (0) 2025.01.30
Root Locus, Compensation  (0) 2025.01.13
PID Control  (1) 2025.01.04
Laplace Transform & Transfer Function  (0) 2025.01.04

Basic closed-loop block diagram

For this system, the closed-loop transfer function is $$\frac{Y(s)}{R(s)}=\frac{D(s)G(s)}{1+D(s)G(s)H(s)}$$ and the characteristic eqn, whose roots are the poles of this transfer function, is $$1+D(s)G(s)H(s)=0$$

Let the open loop transfer function $$L(s)=\frac{b(s)}{a(s)}$$

then the characteristic eqn: $$1+KL(s)=0$$

 

Evans's Method

If the parameter is the gain of the controller, then $L(s)$ is proportional to $D(s)G(s)H(s)$

Evans suggested that we plot the locus of all possible roots of $1+KL(s)=0$ as $K$ varies from zero to infinity and then use the resulting plot to aid us in selecting the best value of $K$. Also we can determine the consequences of additional dynamics added to $D(s)$ as compensation in the loop considering the effects of additional poles and zeros on this graph.

$$L(s)=\frac{b(s)}{a(s)}\quad where \quad b(s)=\prod_{i=1}^{m}(s-z_i),\quad a(s)=\prod_{i=1}^{n}(s-p_i)$$

$$1+KL(s)=0\quad \to \quad L(s)=-\frac{1}{K}$$

 

ex 5.1) 

$$L(s)=\frac{1}{s(s+1)} $$

characteristic eqn: $$a(s)+Kb(s)=s^2+s+K=0$$

roots: $$r_1,r_2=-\frac{1}{2}\pm\frac{\sqrt{1-4K}}{2}$$

Root locus for L(s)=1/s(s+1)

 

 

Guidelines for Determining a Root Locus

Definition 1. The root locus is the set of values of s for which $1+KL(s)=0$ is satisfied as the real parameter $K$ varies from $0$ to $+\infty$. Typically, $1+KL(s)=0$ is the characteristic equation of the system, and in this case the roots on the locus are the closed-loop poles of that system.

 

Definition 2. The root locus of $L(s)$ is the set of points in the s-plane where the phase of $L(s)$ is 180˚. If we define the angle to the test point from a zero as $\psi_i$ and the angle to the test point from a pole as $\phi_i$ then Definition 2 is expressed as those points in the s-plane where, for integer $l$, $$\sum \psi_i-\sum\phi_i=180^{\circ}+360^{\circ}(l-1)$$

 

The immense merit of Definition 2 is that, while it is very difficult to solve a high-order polynomial by hand, computing the phase of a transfer function is relatively easy.

 

e.g.

$$L(s)=\frac{s+1}{s(s+5)[(s+2)^2+4]}$$

Mark poles and zeros on the s-plane. Suppose our test point is $s_0=-1+2j$. We would like to test whether or not $s_0$ lies on the root locus for some value of $K$.

Measuring the phase

we must have $\angle L(s_0)=180^{\circ}+360^{\circ}(l-1)$ for some integer $l$.

$$\angle(s_0+1)-\angle s_0-\angle(s_0+5)-\angle[(s_0+2)^2+4]=180^{\circ}+360^{\circ}(l-1)$$

$$\angle L=\psi_1-\phi_1-\phi_2-\phi_3-\phi_4=90^{\circ}-116.6^{\circ}-0^{\circ}-76^{\circ}-26.6^{\circ}=-129.2^{\circ}$$

Since the phase of $L(s)$ is not $180 ^{\circ}$, we conclude that $s_0$ is not on the root locus.

 

 

Rules for Plotting a Positive($180 ^{\circ} $) Root Locus

Rule 1. The $n$ branches of the locus start at the poles of $L(s)$ and $m$ of these branches end on the zeros of $L(s)$.

Rule 2. The loci are on the real axis to the left of an add number of poles and zeros.

Rule 3. For large $s$ and $K$, $n-m$ of the loci are asymptotic to lines at angles $\phi_l$ radiating out from the point $s=\alpha$ on the real axis where $$\phi_l=\frac{180^{\circ}+360^{\circ}(l-1)}{n-m},\quad l=1,2,...,n-m,\quad\alpha=\frac{\sum p_i-\sum z_i}{n-m}$$

Rule 4. The angle(s) of departure of a branch of the locus from a pole of multiplicity q is given by $$q\phi_{l,dep}=\sum\psi_i-\sum_{i\neq l}^{}\phi_i-180^{\circ}-360^{\circ}(l-1)$$ and the angle(s) of arrival of a branch at a zero of multiplicity q is given by $$q\psi_{l,arr}=\sum\phi_i-\sum_{i\neq l}^{}\psi_i+180^{\circ}+360^{\circ}(l-1)$$

Rule 5. The locus can have multiple roots at points on the locus and the branches will approach a point of q roots at angles separated by $$\frac{180^{\circ}+360^{\circ}(l-1)}{q}$$ and will depart at angles with the same separation.

 

 

Selecting the Parameter Value

for $s_0$ on the Root Locus, $$K=-\frac{1}{L(s_0)}=\frac{1}{\left| L(s_0) \right|}$$

 

e.g. 

PD Control with the plant of $$K=\frac{1}{L(s_0)}=\frac{1}{\left| L(s_0) \right|}$$

characteristic eqn: $$1+[k_p+k_Ds]\frac{1}{s^2}=0$$

Let $K=k_D$ and the gain ratio as $\frac{k_p}{k_D}=1$. It results in $$1+K\frac{s+1}{s^2}=0$$

MATLAB code to plot the locus:

numS = [1 1];
denS = [1 0 0];
sysS = tf(numS,denS);
rlocus(sysS)

 

 

Effect of a Zero in the LHP

The addition of the zero has pulled the locus into the LHP, a point of general importance in constructing a compensation.

The physical operation of differentiation is not practical. In practice PD control is approximated by $$D(s)=k_p+\frac{k_Ds}{s/p+1}$$

Let $K=k_p+pk_D$, $z=pk_p/K$, then $$D(s)=K\frac{s+z}{s+p}$$

This controller transfer function is called lead compensator

characteristic eqn for the $1/s^2$ plant: $$1+D(s)G(s)=1+KL(s)=1+K\frac{s+z}{s^2(s+p)}=0$$

 

ex 5.4)

$z=1$, $p=12$

$$1+K\frac{s+1}{s^2(s+12)}=0$$

numL = [1 1];
denL = [1 12 0 0];
sysL = tf(numL,denL);
rlocus(sysL)

the effect of the added pole has been to distort the simple circle of the PD control

for points near the origin, the locus is quite similar to the earlier case

the situation changes when the pole is brought closer in

 

ex 5.5)

$z=1$, $p=4$

$$1+K\frac{s+1}{s^2(s+4)}=0$$

numL = [1 1];
denL = [1 4 0 0];
sysL = tf(numL,denL);
rlocus(sysL)

there were both a break-in and a breakaway on the real axis in the case of $p=12$, but these features have disappeared in the case of $p=4$

 

ex 5.6)

$z=1$, $p=9$

$$1+K\frac{s+1}{s^2(s+9)}=0$$

numL = [1 1];
denL = [1 9 0 0];
sysL = tf(numL,denL);
rlocus(sysL)

When the third pole is near the zero (p near 1), there is only a modest distortion of the locus that would result for $D(s)G(s)\cong K\frac{1}{s^2}$ which consists of two straight-line locus branches departing at $\pm90^\circ$ from the two poles at $s = 0$.

As we increase p, the locus changes until at $p = 9$ the locus breaks in at –3 in a triple multiple root.

As the pole p is moved to the left beyond –9, the locus exhibits distinct break-in and breakaway points, approaching, as p gets very large, the circular locus of one zero and two poles.

When p = 9, is thus a transition locus between the two second-order extremes, which occur at p = 1 (when the zero is canceled) and p → ∞ (where the extra pole has no effect).

 

 

Design using Dynamic Compensation

Lead compensation approximates the function of PD control and acts mainly to speed up a response by lowering rise time and decreasing the transient overshoot.

Lag compensation approximates the function of PI control and is usually used to improve the steady-state accuracy of the system.

Notch compensation will be used to achieve stability for systems with lightly damped flexible modes, as we saw with the satellite attitude control having noncollocated actuator and sensor.

 

 

Lead and Lag Compensation

$$D(s)=K\frac{s+z}{s+p}$$

Compensation with this transfer function is called Lead Compensation if $z<p$ and Lag Compensation if $z>p$.

Compensation is typically placed in series with the plant in the feed-forward path.

It can also be placed in the feedback path and in that location has the same effect on the overall system poles but results in different transient responses from reference inputs.

characteristic eqn: $$1+D(s)G(s)=1+KL(s)=0$$

 

 

Lead Compensation

e.g.

$$G(s)=\frac{1}{s(s+1)}$$

$D(s)=K$(solid) vs. $D(s)=K(s+2)$(dashed)

The effect of the zero is to move the locus to the left, toward the more stable part of the s-plane.

If our speed-of-response specification calls for $\omega_n=2$, then proportional control alone (D = K) can produce only a very low value of damping ratio $\zeta$ when the roots are put at the required value of $\omega_n$.

But, the pure derivative control is not normally practical because of the amplification of sensor noise implied by the differentiation and must be approximated. If the pole of the lead compensation is placed well outside the range of the design $\omega_n$, then we would not expect it to upset the dynamic response of the design in a serious way. $$D(s)=K\frac{s+2}{s+p}$$

Consider $p=10$ and $p=20$.

For small gains, before the real root departing from –p approaches –2, the loci with lead compensation are almost identical to the locus for pure PD. The effect of the pole is to lower the damping, but for the early part of the locus, the effect of the pole is not great if $p > 10$.

In general, the zero is placed in the neighborhood of the closed-loop $\omega_n$, as determined by rise-time or settling-time requirements, and the pole is located at a distance 5 to 20 times the value of the zero location. The choice of the exact pole location is a compromise between the conflicting effects of noise suppression, for which one wants a small value for p, and compensation effectiveness for which one wants a large p. In general, if the pole is too close to the zero, the root locus moves back too far toward its uncompensated shape and the zero is not successful in doing its job. On the other hand, when the pole is too far to the left, the magnification of sensor noise appearing at the output of D(s) is too great and the motor or other actuator of the process can be overheated by noise energy in the control signal, $u(t)$. With a large value of p, the lead compensation approaches pure PD control.

 

ex 5.11)

Find a compensation for $G(s) = \frac{1}{s(s+1)}$ that will provide overshoot of no more than 20% and rise time of no more than 0.3 sec.

Note that $M_p$(overshoot) is the maximum amount of the overshoot divided by the final value where $M_p=y(t_p)-1=e^{-\sigma\pi/\omega_d}=e^{-\pi\zeta/\sqrt{1-\zeta^2}}$ and $t_r$(rise time) is the time to reach the vicinity of the new set point where $t_r\approx \frac{1.8}{\omega_n}$

So, the requirement is $\zeta\geq 0.5$ and $\omega_n\cong \frac{1.8}{0.3}=6$.

To provide some margin, we'll shoot for $\zeta\geq 0.5$ and $\omega_n\geq 7 rad/sec$.

Let's try with $$D(s)=K\frac{s+2}{s+10}$$

$K = 70$ yields $\zeta = 0.56$ and $\omega_n = 7.7 rad/sec$

But the step response of the system exceeds the overshoot specification a small amount.

Typically, lead compensation in the feed forward path will increase the step-response overshoot because the zero of the compensation has a differentiating effect.

We can tune the compensator to achieve better damping in order to reduce the overshoot in the transient response using RLTOOL. 

sysG=tf(1,[1 1 0]);
sysD=tf([1 2],[1 10]);
rltool(sysG,sysD)

By moving the pole of the lead compensator more to the left in order to pull the locus in that direction, and selecting K = 91, we obtain $$D(s)=91\frac{s+2}{s+13}$$

The phase at $s=j\omega$ is given by $$\phi=\tan^{-1}\left ( \frac{\omega}{z} \right )-\tan^{-1}\left ( \frac{\omega}{p} \right )$$

If $z < p$, then $\phi$ is positive, which by definition indicates phase lead.

 

 

Lag Compensation

Once satisfactory dynamic response has been obtained, perhaps by using one or more lead compensations, we may discover that the low-frequency gain—the value of the relevant steady-state error constant, such as $K_v$—is still too low.

The system type, which determines the degree of the polynomial the system is capable of following, is determined by the order of the pole of the transfer function $D(s)G(s)$ at $s = 0$. If the system is Type 1, the velocity-error constant, which determines the magnitude of the error to a ramp input, is given by $\displaystyle \lim_{s \to 0}sG(s)D(s)$.

In order to increase this constant, it is necessary to do so in a way that does not upset the already satisfactory dynamic response. Thus, we want an expression for $D(s)$ that will yield a significant gain at s = 0 to raise $K_v$ (or some other steady-state error constant) but is nearly unity (no effect) at the higher frequency $\omega_n$, where dynamic response is determined. The solution is lag compensation. $$D(s)=\frac{s+z}{s+p},\quad z>p$$

The values of z and p are small compared with $\omega_n$, yet $D(0) = \frac{Z}{p} = 3\;to\;10$ (the value depending on the extent to which the steady-state gain requires boosting) Because z > p, the phase $\phi$ is negative, corresponding to phase lag.

 

e.g.

Consider $$G(s)=\frac{1}{s(s+1)}$$

with lead compensator $$KD_1(s)=K\frac{s+2}{s+13}$$

with the gain of $K=91$ from the previous example, the velocity constant is $$K_v=\displaystyle \lim_{s \to 0}sKD_1G=\displaystyle \lim_{s \to 0}s(91)\frac{s+2}{s+13}\frac{1}{s(s+1)}=\frac{91*2}{13}=14$$

Suppose we require that $K_v = 70$. To obtain this, we require a lag compensation with $Z/p = 5$ in order to increase the velocity constant by a factor of 5. This can be accomplished with a pole at $p= -0.01$ and a zero at $z = -0.05$, which keeps the values of both z and p very small so that $D_2(s)$ would have little effect on the portions of the locus representing the dominant dynamics around $\omega_n=7$. The lag compensation transfer function is $$D_2(s)=\frac{s+0.05}{s+0.01}$$

$$KD(s)=91\frac{s+2}{s+13}\frac{s+0.05}{s+0.01}$$

With $K = 91$, the dominant roots are at $-5.8 \pm j6.5$. The effect of the lag compensation can be seen by expanding the region of the locus around the origin(right side of the figure above). The circular locus is a result of the small pole and zero. The transient response corresponding to this root will be a very slowly decaying term, which will have a small magnitude because the zero will almost cancel the pole in the transfer function. The decay is so slow that this term may seriously influence the settling time, and zero will not be present in the step response to a disturbance torque and the slow transient will be much more evident there. That's why it is important to place the lag pole-zero combination at as high a frequency as possible without causing major shifts in the dominant root locations.

 

 

Notch Compensation

The lead and lag compensation above is found to have a substantial oscillation at about 50 rad/sec when tested, because there was an unsuspected flexibility of the noncollocated type at a natural frequency of $\omega_n=50$. On reexamination, the plant transfer function, including the effect of the flexibility, is estimated to be $$G(s)=\frac{2500}{s(s+1)(s^2+s+2500)}$$

the very lightly damped roots at 50 rad/sec have been made even less damped or perhaps unstable by the feedback. The best method to fix this situation is to modify the structure so that there is a mechanical increase in damping. Unfortunately, this is often not possible because it is found too late in the design cycle.

How to correct this oscillation?

approach 1) Gain Stabilization: reducing the gain at high frequency

add lag compensation

it might lower the loop gain far enough that there is greatly reduced spillover and the oscillation is eliminated.

approach 2) Phase Stabilization

add a zero near the resonance

this approach can be used if the response time resulting from gain stabilization is too long.

it shifts the departure angles from the resonant poles so as to cause the closed-loop root to move into the LHP, thus causing the associated transient to die out. the result is called a notch compensation which has a transfer function of $$D_{notch}(s)=\frac{s^2+2\zeta\omega_0s+\omega_0^2}{(s+\omega_0)^2}$$

A necessary design decision is whether to place the notch frequency above or below that of the natural resonance of the flexibility in order to get the necessary phase. A check of the angle of departure shows that with the plant compensated and the notch as given, it is necessary to place the frequency of the notch above that of the resonance to get the departure angle to point toward the LHP. Thus the compensation is added with the transfer function $$D_{notch}(s)=\frac{s^2+0.8s+3600}{(s+60)^2}$$

 

When considering notch or phase stabilization, it is important to understand that its success depends on maintaining the correct phase at the frequencyofthe resonance. If that frequency is subject to significant change, which is common in many cases, then the notch needs to be removed far enough from the nominal frequency in order to work for all cases. The result may be interference of the notch with the rest of the dynamics and poor performance. As a general rule, gain stabilization is substantially more robust to plant changes than is phase stabilization.

 

 

 

 

 

'Study > Control' 카테고리의 다른 글

State-Space Design  (0) 2025.01.30
Frequency-Response Design  (0) 2025.01.15
PID Control  (1) 2025.01.04
Laplace Transform & Transfer Function  (0) 2025.01.04
Introduction: the Fundamentals of Control Theory  (0) 2024.12.28

Proportional Control (P)

Feedback control signal is linearly proportional to the system error.

$$\frac{U(s)}{E(s)}=D_{cl}(s)=k_p$$

 

e.g. second order plant for a motor with nonnegligible inductance

Plant transfer function: $$G(s)=\frac{A}{s^2+a_1s+a_2}$$

Characteristic eqn: $$1+k_pG(s)=0\;\to\; s^2+a_1s+a_2+k_pA=0$$

  • it can determine the natural frequency (constant term in eqn)
  • it can't determine the damping
  • system type 0
  • if $k_p$ is made large to get adequately small steady-state error, the damping may be much too low for satisfactory transient response with proportional control alone.

 

 

Proportional Plus Integral Control (PI)

Add an integral term to the controller to get the automatic reset effect results in the proportional plus integral control equation in the time domain.

$$u(t)=k_pe+k_I\int_{t_0}^{t}e(\tau)d\tau$$

$$\frac{U(s)}{E(s)}=D_{cl}(s)=k_p+\frac{k_I}{s}$$

  • system type 1
  • reject completely constant bias disturbances

 

e.g.

plant: $$Y=\frac{A}{\tau s+1}(U+W)$$

transform eqn for controller: $$U=k_p(R-Y)+k_I\frac{R-Y}{s}$$

$$(\tau s+1)Y=A(k_p+\frac{k_I}{s})(R-Y)+AW\to(\tau s^2+(Ak_p+1)s+Ak_I)Y=A(k_ps+k_I)R+sAW$$

characteristic eqn: $$\tau s^2+(Ak_p+1)s+Ak_I=0$$ two roots may be complex, $\omega_n=\sqrt{\frac{Ak_I}{\tau}},\;\zeta =\frac{Ak_p+1}{2\tau\omega_n} $

 

e.g.

plant: $$G(s)=\frac{A}{s^2+a_1s+a_2}$$

characteristic eqn: $$1+(k_p+\frac{k_I}{s})G(s)=0\quad\to\quad s^3+\underbrace{\:a_1s^2\:}_{out\:of\:control}+(a_2+Ak_p)s+Ak_I=0$$

 

 

PID Control

An important effect of the D term: providing a sharp response to suddenly changing signals

Block diagram of the PID controller with the D-term in the feedback path
Block diagram of the PID controller with the D-term in the forward path

 

e.g. plant: $$G(s)=\frac{A}{s^2+a_1s+a_2}$$

characteristic eqn: $$1+(k_p+\frac{k_I}{s}+k_Ds)G(s)=0\quad\to\quad s^3+(a_1+Ak_D)s^2+(a_2+Ak_p)s+Ak_I=0$$

$\to$ three parameters can be determined

 

 

Ziegler-Nichols Tuning of the PID Controller

Step response of process control system: process reaction curve as below:

Process Reaction Curve

$$\frac{Y(s)}{U(s)}=\frac{Ae^{-st_d}}{\tau s+1}$$

 

1. Tuning by decay ratio of 0.25

desigining goal: closed-loop step response transient with a decay ratio of approximately 0.25 (corresponding to $\zeta=0.21$)

2. Tuning by evaluation at limit of stability (ultimate sensitivity method)

Criteria for adjusting the parameters are based on evaluating the amplitude and frequency of the oscillations of the system at the limit of stability

The proportional gain is increased until the system becomes marginally stable and continuous oscillations just begin with amplitude limited by the saturation of the actuator. The corresponding gain is defined as $K_u$ (called the ultimate gain) and the period of oscillation is $P_u$ (called the ultimate period).

$P_u$ should be measured when the amplitude of oscillation is as small as possible.

$$D_c(s)=k_p(1+\frac{1}{T_Is}+T_Ds)$$

Determination of ultimate gain and period
Neutrally stable system

 

'Study > Control' 카테고리의 다른 글

State-Space Design  (0) 2025.01.30
Frequency-Response Design  (0) 2025.01.15
Root Locus, Compensation  (0) 2025.01.13
Laplace Transform & Transfer Function  (0) 2025.01.04
Introduction: the Fundamentals of Control Theory  (0) 2024.12.28

Laplace Transform is necessary in the control world.

It is necessary to solve linear ODE, linear ODE system including initial value problem.

 

 

How to solve?

1. 주어진 ODE를 보조방정식(subsidiary equation)으로 변환한다.

2. 보조방정식을 대수적으로 풀어 해를 얻는다.

3. 위의 해를 역변환한다.

 

 

Definition

$$F(s)=\mathcal{L}(f)=\int_{0}^{\infty}{e^{-st}f(t)dt}$$

 

 

Examples

$$f(t)$$ $$\mathcal{L}(f)$$ $$f(t)$$ $$\mathcal{L}(f)$$
$$1$$ $$ \frac{1}{s} $$ $$\cos wt$$ $$\frac{s}{s^2+w^2}$$
$$t$$ $$\frac{1}{s^2}$$ $$\sin wt$$ $$\frac{w}{s^2+w^2}$$
$$t^n$$ $$\frac{n!}{s^{n+1}}$$ $$\cosh at$$ $$\frac{s}{s^2-a^2}$$
$$t^a (a>0)$$ $$\frac{\Gamma(a+1)}{s^{a+1}}$$ $$\sinh at$$ $$\frac{a}{s^2-a^2}$$
$$e^{at}$$ $$\frac{1}{s-a}$$ $$e^{at}\cos wt$$ $$\frac{s-a}{(s-a)^2+w^2}$$
    $$e^{at}\sin wt$$ $$\frac{w}{(s-a)^2+w^2}$$

 

 

Properties

1. Superposition

$$\mathcal{L}\left\{ \alpha f_1(t)+\beta f_2(t)\right\}=\alpha F_1(s)+\beta F_2(s)$$

 

2. Time Delay

$$F_1(s)=\int_{0}^{\infty}f(t-\lambda)e^{-st}dt=e^{-s\lambda}F(s)$$

$$\mathcal{L} \left\{ f(t-a)u(t-a) \right\}=e^{-as}F(s)$$

$$or\quad \mathcal{L} \left\{ f(t)u(t-a) \right\}=e^{-as}\mathcal{L}\left\{ f(t+a) \right\}$$

 

3. Time Scaling

$$F_1(s)=\int_{0}^{\infty}f(at)e^{-st}dt=\frac{F(\frac{s}{a})}{\left|a \right|}$$

 

4. Shift in Frequency

$$F_1(s)=\int_{0}^{\infty}e^{-at}f(t)e^{-st}dt=F(s+a)$$

 

5. Differentiation

$$\mathcal{L}\left\{ \dot{f} \right\}=sF(s)-f(0^-)$$

$$ \mathcal{L}\left\{ \ddot{f} \right\}=s^2F(s)-sf(0^-)-\dot{f}(0^-)$$

$$\mathcal{L}\left\{ f^{(m)} \right\}=s^mF(s)-s^{m-1}f(0^-)-s^{m-2}\dot{f}(0^-)-\cdots -f^{(m-1)}(0^-)$$

 

6. Integration

$$ \mathcal{L}\left\{ \int_{0}^{t} f(\xi)d\xi \right\}=\frac{F(s)}{s}$$

 

7. Convolution

$$(f*g)(t)=\int_{0}^{t}f(\tau)g(t-\tau)d\tau$$

$$ \mathcal{L}\left\{ f_1(t)*f_2(t) \right\}=F_1(s)F_2(s)$$

 

8. Time Product

$$ \mathcal{L}\left\{ f_1(t)f_2(t) \right\}=\frac{F_1(s)*F_2(s)}{2\pi j}$$

 

9. Multiplication by Time

$$\mathcal{L}\left\{ tf(t) \right\}=-\frac{\mathrm{d} }{\mathrm{d} s}F(s)$$

 

10. Divisiton by Time

$$ \mathcal{L}\left\{ \frac{f(t)}{t} \right\}=\int_{s}^{\infty}F(\tilde{s})d\tilde{s}$$

 

 

Unit Step function (Heaviside function)

$$u(t-a)=\left\{\begin{matrix}
0,\quad t<a \\ 1,\quad t>a
\end{matrix}\right.$$

$$\mathcal{L} \left\{ u(t-a) \right\}=\frac{e^{-as}}{s}$$

 

 

Unit Impulse function (Dirac Delta function)

$$\delta (t-a)=\left\{\begin{matrix}
\infty, \quad t=a \\ 0, \quad else
\end{matrix}\right.
\quad and \quad \int_{0}^{\infty}\delta (t-a)dt=1$$

$$\mathcal{L}\left\{ \delta(t-a) \right\}=e^{-as}$$

 

 

Transfer Function

Transfer Gain from $U(s)$ to $Y(s)$ - input to output.

Ratio of the Laplace Transform

$$H(s)=\frac{Y(s)}{U(s)}$$

 

ex 3.4)

find the output $y$ for the input $u=e^{st}$

system eqn: $\dot{y}(t)+ky(t)=u(t)=e^{st}$

assume that $y(t)=H(s)e^{st}$

$sH(s)e^{st}+kH(s)e^{st}=e^{st}\to H(s)=\frac{1}{s+k}\to y=\frac{e^{st}}{s+k}$

 

ex 3.6)

step & ramp transforms

step of size     $a$: $F(s)=\int_{0}^{\infty}ae^{-st}dt=\frac{a}{s}$

ramp               $bt$: $F(s)=\int_{0}^{\infty}bte^{-st}dt=\frac{b}{s^2}$

 

'Study > Control' 카테고리의 다른 글

State-Space Design  (0) 2025.01.30
Frequency-Response Design  (0) 2025.01.15
Root Locus, Compensation  (0) 2025.01.13
PID Control  (1) 2025.01.04
Introduction: the Fundamentals of Control Theory  (0) 2024.12.28

This category is based on 'Feedback Control of Dynamic System 6th edition' (Franklin).

 

Outline of the book:

Ch.1 the essential ideas of feedback and some of the key design issues, history of control

Ch.2 dynamic modeling with mechanical, electrical, electromechanical, fluid, and thermodynamic devices

Ch.3 dynamic response, correlation between pole locations and transient response, the effects of extra zeros and poles on dynamic response, stability of dynamic system

Ch.4 basic equations and transfer functions of feedback along with the definitions of the sensitivity function, open-loop and closed-loop control, PID Control Structure

Ch.5 design methods based on root locus

Ch.6 design methods based on frequency response

Ch.7 design methods based on state-variable feedback

Ch.8 design feedback control for implementation in a digital computer

Ch.9 nonlinear material

Ch.10 three primary approaches

 

 

'Study > Control' 카테고리의 다른 글

State-Space Design  (0) 2025.01.30
Frequency-Response Design  (0) 2025.01.15
Root Locus, Compensation  (0) 2025.01.13
PID Control  (1) 2025.01.04
Laplace Transform & Transfer Function  (0) 2025.01.04

+ Recent posts